
A discrete quantum model of the harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 085201

(http://iopscience.iop.org/1751-8121/41/8/085201)

Download details:

IP Address: 171.66.16.153

The article was downloaded on 03/06/2010 at 07:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/8
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 085201 (14pp) doi:10.1088/1751-8113/41/8/085201

A discrete quantum model of the harmonic oscillator

Natig M Atakishiyev1, Anatoliy U Klimyk2 and Kurt Bernardo Wolf3
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Abstract
We construct a new model of the quantum oscillator, whose energy spectrum
is equally-spaced and lower-bound, whereas the spectra of position and of
momentum are a denumerable non-degenerate set of points in [−1, 1] that
depends on the deformation parameter q ∈ (0, 1). We provide its explicit
wavefunctions, both in position and momentum representations, in terms of
the discrete q-Hermite polynomials. We build a Hilbert space with a unique
measure, where an analogue of the fractional Fourier transform is defined in
order to govern the time evolution of this discrete oscillator. In the limit when
q → 1−, one recovers the ordinary quantum harmonic oscillator.

PACS numbers: 02.20.Qs, 02.30.Gp, 42.30.Kq, 42.30.Va
Mathematics Subject Classification: 20C33, 33C99, 42A99, 81Q10

1. Introduction

Several algebraic constructions have been proposed in the literature to describe various
extensions of the quantum harmonic oscillator. These constructions are based on various
deformations of the standard oscillator Lie algebra, or different associative algebras. In most
of these models, it is difficult to construct a theory for such oscillators, which is as complete
as the well-known treatment of the standard harmonic oscillator in quantum mechanics;
namely, a canonical complementarity between position and momentum, explicit forms for the
wavefunctions, and a coherent description of time evolution.

The earliest model, generally called the q-oscillator, was proposed by Macfarlane [1] and
Biedenharn [2] on the basis of raising and lowering eigenstates of a Hamiltonian with the
q-deformed commutator a+

q aq − qaqa
+
q . A theory of this oscillator has been elaborated (see,

e.g., [3–6]); yet, it has not been clear how to construct position and momentum operators
satisfying the basic commutation relations with a Hamiltonian to characterize infinitesimal
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harmonic motion. This may be one of the reasons why this q-oscillator has not proven
attractive for many physicists.

The postulates we use to define oscillator models are the following [7, 8].

(1) There exists an essentially self-adjoint position operator Q, whose spectrum X is the set
of positions {x} of the system.

(2) There exists a self-adjoint and compact Hamiltonian operator H, whose commutator with
position defines the momentum operator P,

[H,Q] =: −iP, (1)

and corresponds to the first Hamilton equation (i = √−1); the commutator of the
Hamiltonian with momentum returns the position operator

[H,P ] = iQ, (2)

that corresponds with the second Hamilton equation, and which characterizes the
oscillator dynamics. Equivalent to (1)–(2), one can propose the Newton–Lie equation as
[H, [H,Q]] = Q. The set of momentum values of the system is the spectrum of P, which
is equal to that of Q because (1) and (2) generate a rotation between these two operators
(to be written below).

(3) The three operators, Q,P and H, close into an associative algebra, i.e., they satisfy the
Jacobi identity,

[P, [H,Q]] + [Q, [P,H ]] + [H, [Q,P ]] = 0. (3)

We note that the basic commutator [Q,P ] has not been defined. Due to (1) and (2), the
only restriction imposed by the associativity condition (3), since the first two summands are
identically zero, is that [Q,P ] must commute with H, and thus be constant under the oscillator
motion. This indicates that each distinct choice of the basic commutator [Q,P ] will yield a
distinct model for the oscillator. If the choice is the Heisenberg commutator [Q,P ] = h̄1̂,
one has the standard four-generator oscillator Lie algebra H4 = span{H,Q,P, 1̂} of quantum
mechanics (containing the Heisenberg algebraH3 = span{Q,P, 1̂}). In one previous work [9],
with the purpose of endowing Q with a finite set of position eigenvalues x ∈ {−j,−j+1, . . . , j}
(we write x

∣∣j
−j

), the basic commutator was taken to be [Q,P ] = i
[
H − (

j + 1
2

)
1̂
] =: iJ3, in

a matrix representation of the Lie algebra so(3) = su(2) = span{Q,P, J3} of spin j , so the
three operators have the same finite spectrum x

∣∣j
−j

. This model, called the su(2) oscillator,
has been applied to study the parallel processing of finite signals and pixellated images [10].
The general conditions to include oscillator dynamics in associative algebras were given in
[7].

In a previous paper of the same authors [8], a q-algebraic associative structure was
proposed on the basis of the quantum algebra suq(2), the Hamiltonian having a lower-bound
equally-spaced spectrum. Using a non-standard basis to define position and momentum
operators that allowed analytic expressions, their spectra were determined to be a finite set of
non-equally spaced points xs = 1

2 sinh(sκ)/ sinh 1
2κ , with s

∣∣j
−j

and q = e−κ ∈ (0, 1). Also,
explicit expressions were obtained for the wavefunctions in position and momentum, in terms
of the dual q-Kravchuk polynomials, related by a fractional finite Fourier–q-Kravchuk matrix
transform, and a natural representation in a sui generis phase space. The present paper is
a continuation of the research in [11] that constructed quantum oscillators with continuous
bounded spectra for the position and momentum operators.

In this paper, we build an oscillator model on the basis of the Fock representation of a
quadratic associative algebra which is a q-deformation of the standard oscillator algebra; we
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denote this by DqH4, which will be defined in section 2, while the physical interpretation of
the participant operators that characterizes this model are set forth in section 3. The spectrum
of the Hamiltonian in the algebra is lower-bound and equally spaced, as in its standard
counterpart. The position spectrum and wavefunctions, orthonormal under a specific scalar
product over positions, are obtained explicitly in section 4, and the momentum wavefunctions
in section 5. This model can be characterized for having a space of positions given by
an infinite non-degenerate point set contained in the interval [−1, 1]. The coordinate and
momentum realizations of the oscillator are given in sections 6 and 7; in terms of these, we
can write the harmonic oscillator motion in section 8, with a summation kernel is a new, which
is a (denumerable infinite) relative of the fractional Fourier transform of the standard case.
Concluding remarks are offered in section 9.

We use the notations that are standard in the theory of basic hypergeometric functions
and q-orthogonal polynomials (see, e.g., [12]), and we assume throughout that q is a fixed real
number in (0, 1).

2. The quadratic algebra DqH4

We define the algebra DqH4 as the associative algebra generated by a vector basis of elements
I+, I−, I0, satisfying the following commutation relations:

[I0, I±] = ±I±, [I+, I−] = qI0 − (1 + q)q2I0 . (4)

Equivalently, introducing I1 := I+ + I− and I2 := i(I+ − I−), we can characterize this algebra
by

[I0, I1] = −iI2, [I0, I2] = iI1, [I1, I2] = −2i(qI0 − (1 + q)q2I0). (5)

The first relation in (4) can be written in the form

qI0I±q−I0 = q±1I±. (6)

This relation and the fact that both qI0 and q2I0 appear in the second relation of (4) shows
that DqH4 = span{I1, I2, q

I0 , q2I0} is a quadratic associative algebra. This is a q-deformation
of the oscillator algebra H4 because limq→1− DqH4 = H4. Indeed, in the limit limq→1− , we
obtain from (5) the relations

[I0, I1] = −iI2, [I0, I2] = iI1, [I1, I2] = 2i, (7)

which are equivalent to the defining relations of H4.
We are interested in the Fock representation of the algebra DqH4; this is an irreducible

representation constructed on a Hilbert space with the orthonormal basis of vectors
en, n ∈ {0, 1, 2, . . .} (i.e., n

∣∣∞
0 ). In this representation, using the ‘box’ q-number [a]q :=

(1−qa)/(1−q), the operators of the algebra act by raising and lowering the number n of en,

I+en =
√

qn+1[n+1]qen+1, I−en = √
qn[n]qen−1, (8)

I0en = nen, i.e., qI0en = qnen, (9)

and the hermiticity conditions I ∗
+ = I− and I ∗

0 = I0 are satisfied.
In order to have a functional realization of this representation, we consider the space P

of all polynomials in one supplementary variable y, and introduce its basis of monomials

en ↔ en(y) := cny
n, cn = qn(n−1)/4

(q; q)
1/2
n

, n
∣∣∞
0 , (10)

3
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where (a; q)n := (1−a)(1−aq) · · · (1−aqn−1) and (a; q)0 = 1. Acting on analytic functions
f (y) ∈ P , the Fock representation can be written in terms of the scale Ta and q-difference Dq

operators,

I+ =
√

q

1−q
yTq, qI0 = Tq, I− = [q(1 − q)]1/2 Dq; (11)

Taf (y) = f (ay), Dqf (y) = f (y) − f (qy)

1 − q
. (12)

This realization of the algebra is equivalent to that in (8) and (9), with the functions en(y)

playing the role of the basis elements en as eigenfunctions of the weight operator I0.
Let us now introduce a scalar product into the space of polynomials P . This scalar product

is of a Fisher-type scalar product and is given by the formula

〈f1(y), f2(y)〉 = f1(D̃q)f
†
2 (y)|y=0,

where D̃q := (1 − q)Tq−1Dq, f1 and f2 are polynomials, and f
†
2 denotes the polynomial f2,

whose coefficients are replaced by their complex conjugate ones. In this formula, we have the
action of the difference operator upon the polynomial f

†
2 . Then it is directly verified that

〈en, en′ 〉 = δn,n′ , n, n′∣∣∞
0 . (13)

Closing the space P with respect to this scalar product, we obtain a Hilbert space that we
denote by H. The space H consists of functions

f (y) =
∞∑

n=0

bnen(y) =
∞∑

n=0

bncny
n =

∞∑
n=0

any
n, (14)

where an = bncn, and cn are determined by (10). Since 〈en, en′ 〉 = δn,n′ by definition, for
f1(y) = ∑∞

n=0 any
n and f2(y) = ∑∞

n=0 a′
ny

n we have

〈f1, f2〉 =
∞∑

n=0

ana
′
n

|cn|2 . (15)

This means that the Hilbert space H consists of analytic functions f1(y) = ∑∞
n=0 any

n such
that

‖f ‖2 :=
∞∑

n=0

∣∣∣∣an

cn

∣∣∣∣2

< ∞. (16)

3. Assignment of observables to generators

The discrete oscillator is a class of oscillator models that depend on the parameter q ∈ (0, 1),
and based on the Fock irreducible representation of the algebra DqH4, where the physical
observables are assigned to the spectra of self-adjoint generators of the algebra in the following
way:

position: Q :=
√

(1−q)/qI1, (17)

momentum: P :=
√

(1−q)/qI2, (18)

Hamiltonian: H := I0 + 1
2 1̂. (19)

4
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Then, due to (5), H exhibits the Hamiltonian oscillator commutation relations (1) and (2) with
Q and P, and determines the basic commutator [Q,P ], through

[H,Q] = −iP, [H,P ] = iQ, (20)

[Q,P ] = 2i(1 − q−1)[qH−1/2 − (1 + q)q2H−1] =: iF(H). (21)

The operator F(H) defined in (21) commutes with the Hamiltonian H and is therefore also
diagonal in the Fock basis {en}∞n=0 in (10),

F(H)en = 2(1 − q−1)[qn − (1 + q)q2n]en. (22)

This basis of H thus consists of eigenfunctions of a Hamiltonian with equally-spaced
eigenvalues,

Hen = (
n + 1

2

)
en, n

∣∣∞
0 , (23)

coinciding with the energy spectrum of the standard quantum harmonic oscillator.
From (20), the time evolution of the discrete oscillator position and momentum operators

is produced by

exp(iτH) = eiτ/2 exp(iτI0), (24)

and results in the harmonic motion(
Q(τ)

P (τ)

)
= eiτH

(
Q

P

)
e−iτH =

(
cos τ sin τ

− sin τ cos τ

)(
Q

P

)
, (25)

which for τ ∈ [0, 2π) forms a group U(1) of inner automorphisms of the pair of operators
Q and P, that we interpret as rotations of a phase plane around its origin (still to be studied
for this model, see [8]). The phase eiτ/2 is due to the energy 1

2 of the ground state e0, while
exp(iτI0) is the discrete counterpart of the fractional Fourier transform for this model, to be
seen in section 8.

The associative algebra DqH4 is a q-deformation of the standard Heisenberg–Weyl
algebra, where I± in (8) are recognized as the raising and lowering operators

a+
q := I+ = 1

2

√
q

1 − q
(Q − iP), aq := I− = 1

2

√
q

1 − q
(Q + iP). (26)

From (4) it then follows that[
lim

q→1−
aq, lim

q→1−
a+

q

] = lim
q→1−

[(1+q)q2I0 − qI0 ] = 1, (27)

so we recover the standard oscillator. This is the place to emphasize the difference between
the Macfarlane–Biedenharn q-oscillator [1–6], which is defined in terms of q-commutators
aqa

+
q − qa+

q aq , and our discrete oscillator, which is formulated exclusively with ordinary
commutators.

4. Spectrum and eigenfunctions of the position operator

A direct calculation using (8) shows that in the Fock eigenbasis {en}∞n=0 of the Hamiltonian H,
the position operator Q =

√
q−1 − 1I1 acts as

Qen =
√

qn(1 − qn+1)en+1 +
√

qn−1(1 − qn)en−1. (28)

Since |qn(1 − qn+1)| � 1 for n
∣∣∞
0 , the norm ‖Q‖ of Q does not exceed 1, and hence it is a

bounded operator whose eigenvalues {x} will lie in the real interval [−1, 1].

5
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4.1. Eigenvectors of position

To find the eigenvectors ψx(y) and the spectrum {x} = X of the position operator Q,

Qψx(y) = xψx(y), x ∈ X , (29)

we represent ψx(y) in the form of a linear combination of the monomials (10),

ψx(y) =
∞∑

n=0

pn(x)en(y), (30)

where pn(x) are coefficients depending on the points of the spectrum x ∈ X .
When we substitute the expansion (30) into the equation (29), we obtain

∞∑
n=0

pn(x)
√

qn(1 − qn+1)en+1 + pn(x)
√

qn−1(1 − qn)en−1 = x

∞∑
n=0

pn(x)en. (31)

From here we find the following three-term recurrence relation for the coefficients pn(x) in
(30),

xpn(x) =
√

qn(1−qn+1)pn+1(x) +
√

qn−1(1−qn)pn−1(x), (32)

starting with p−1(x) = 0 and p0(x) := 1 setting the common constant factor.
We see from (32) that the coefficients pn(x) in (30) are polynomials in x of degree n,

which can be evaluated uniquely. To solve the recurrence relation, we make the substitution

pn(x) = (q; q)−1/2
n q−n(n−1)/4p̃n(x), (33)

which turns (32) into

xp̃n(x) = p̃n+1(x) + qn−1(1 − qn)p̃n−1(x). (34)

Comparing this with the recurrence relation for the discrete q-Hermite polynomials of type I,
given by 2φ1 basic hypergeometric polynomials [13, equation (3.28.3)],

hn(z; q) := qn(n−1)/2
2φ1(q

−n, z−1; 0; q;−qz), (35)

zhn(z; q) = hn+1(z; q) + qn−1(1 − qn)hn−1(z; q), (36)

we establish that p̃n(x) = hn(x; q). We can thus write the coefficient polynomials in (30) as

pn(x) = (q; q)−1/2
n q−n(n−1)/4hn(x; q). (37)

From (32) follows that these polynomials have definite parity: pn(x) = (−1)npn(x).
Collecting these results we write the eigenfunctions ψx(y) of the position operator Q as

ψx(y) =
∞∑

n=0

(q; q)−1/2
n q−n(n−1)/4hn(x; q)en(y) (38)

=
∞∑

n=0

(q; q)−1
n hn(x; q)yn, (39)

= (y2; q2)∞
(xy; q)∞

, (40)

where in the last expression we use the symbol (a; q)∞ := ∏∞
n=0(1−aqn) and the summation

formula in [13, equation (3.28.11)]. Because of the convergence of (y2; q2)∞ in (40) for the
basis {ψx(y)}x∈X , we must restrict the domain of definition of functions f (y) ∈ H to the open
disk |y| < 1. Then the condition (xy; q)∞ < 1 is fulfilled automatically since we saw that
the eigenvalues x ∈ X of Q are contained in the interval [−1, 1].

6
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4.2. The spectrum of position

The spectrum of the self-adjoint position operator Q ∼ I1 = I+ + I− can be found from the
series (38); from (28) we see that in the basis {en(y)}∞n=0 the operator Q is a self-adjoint Jacobi
tridiagonal matrix of the form

Q =

⎛⎜⎜⎜⎜⎜⎝
b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ , an �= 0. (41)

We can now use the theory of these matrices from [14, Chap. VII], (see also [6]) to connect
their spectra with the corresponding measures for orthogonal polynomials. In this vein, we
note that in the Fock basis the position eigenfunctions ψx(y) are expanded in terms of the
basis elements {en(y)}∞0 with the polynomial coefficients pn(x) in (30), which are given in
terms of discrete q-Hermite polynomials of type I in (37). According to the results in [14,
Chap. VII], these polynomials are then orthogonal with respect to a spectral measure dµ(x)

of the operator, which is unique up to a constant factor, on a set X ⊂ � that is the simple
spectrum of Q.

In finding the spectrum of the position operator Q, we recall that the discrete q-Hermite
polynomials hn(x; q) obey the orthogonality relation∫ 1

−1
(q2x2; q2)∞hk(x; q)hm(x; q) dqx = δk,m(1−q)(q2; q2)∞(−1; q)∞(q; q)mqm(m−1)/2

= 2δk,m(1−q)(q; q)∞(−q; q)2
∞(q; q)mqm(m−1)/2, (42)

where
∫ 1
−1 f (x) dqx is the symbol of the q-integral (see [13, equation (3.28.2)]). This

orthogonality relation can be written in the form of a sum [12],
∞∑

n=0

(q2n+2; q2)∞qn(hk(q
n; q)hm(qn; q) + hk(−qn; q)hm(−qn; q))

= 2δk,m(q; q)∞(−q; q)2
∞(q; q)mqm(m−1)/2. (43)

This means that the spectrum X of Q is the simple set of points

X = {
qn,−qn; n

∣∣∞
0

}
, (44)

and that the corresponding eigenfunctions are

ψqn(y), ψ−qn(y), n
∣∣∞
0 , (45)

given by (38)–(40). The spectrum of Q is discrete, which means that the eigenfunctions
ψ±qn(y) form a denumerable orthogonal basis in the Hilbert space H; we note thatX ⊂ [−1, 1]
has a unique accumulation point 0 that does not belong to the set.

4.3. Normalization of the eigenfunctions

The eigenfunctions of Q were determined only up to constant factors, so we proceed to
normalize the eigenfunctions {ψ±qs (y)}∞0 in their form (39). From (38) and the orthogonality
of the basis {en(y)}∞n=0 we obtain

〈ψx(y), ψx ′(y)〉H = δx,x ′

∞∑
n=0

q−n(n−1)/2

(q; q)n
hn(x; q)hn(x

′; q), (46)

7
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where x and x ′ take values in X = {
qs,−qs; s

∣∣∞
0

}
. We can calculate this sum as follows: we

build the functions

h̃n(q
s; q) :=

√
(q2s+2; q2)∞qs

2(q; q)∞(−q; q)2∞(q; q)nqn(n−1)/2
hn(q

s; q), (47)

h̃n(−qs; q) :=
√

(q2s+2; q2)∞qs

2(q; q)∞(−q; q)2∞(q; q)nqn(n−1)/2
hn(−qs; q). (48)

We can see the h̃n(±qs; q) as the elements (n,±s) of a matrix of numbers (integer n � 0
numbering rows and s � 0 numbering columns), written as({̃hn(q

s; q)}∞n,s=0

{̃hn(−qs; q)}∞n,s=0

)
. (49)

Columns of this matrix are orthonormal due to the orthogonality relation (43) for the discrete
q-Hermite polynomials hk(z; q). In the infinite-dimensional case, the orthonormality of
columns does not immediately lead to the orthonormality of rows. But in accordance with the
reasoning of [15], one can state that rows of this matrix are also orthogonal, i.e.,

∞∑
n=0

h̃n(q
s; q)̃hn(q

s ′ ; q) = δs,s ′ , (50)

∞∑
n=0

h̃n(q
s; q)̃hn(−qs ′ ; q) = 0, (51)

∞∑
n=0

h̃n(−qs; q)̃hn(−qs ′ ; q) = δs,s ′ . (52)

Substituting (47) and (48) into (50)–(52), we obtain

(q2s+2; q2)∞qs

2(q; q)∞(−q; q)2∞

∞∑
n=0

hn(±qs; q)hn(±qs ′ ; q)

(q; q)nqn(n−1)/2
= δs,s ′ , (53)

where one has to take only the upper or only the lower signs. Returning to the scalar product
in (46), we find

〈ψ±qs (y), ψ±qs′ (y)〉H = δs,s ′
2(q; q)∞(−q; q)2

∞
qs(q2s+2; q2)∞

. (54)

We thus arrive at the functions

�x(y) ≡ �±qs (y) :=
√

(q2s+2; q2)∞qs

2(q; q)∞(−q; q)2∞
ψ±qs (y), (55)

which are orthonormal under the scalar product (46) in H,

〈�x(y),�x ′(y)〉H = δx,x ′ , x, x ′ ∈ X . (56)

8
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5. Spectrum and eigenfunctions of the momentum operator

The momentum operator P ∼ I2 = i(I+ − I−) acts on the basis {en(y)}∞0 as

Pen = i(
√

qn(1 − qn+1)en+1 −
√

qn−1(1 − qn)en−1) (57)

[cf (28)]. When we change this basis to another {̃en}∞0 with ẽn = inen, one can see that in
the new basis the momentum operator P acts as a matrix with the same coefficient elements
as the position operator in section 4 on the former basis. This means that the spectrum of
momentum P coincides with the spectrum of position Q, namely, SpecP = X , where X is
given in (44). Similarly, the eigenfunctions of momentum P can be found in the same way as
the eigenfunctions of Q, by using the basis {̃en}∞0 .

Let φp(y) satisfy Pφp(y) = pφp(y), an eigenfunction of P corresponding to the
eigenvalue p, with an expansion in the mode eigenbasis {en(y)}∞0 given by

φp(y) =
∞∑

n=0

gn(p)en(y), (58)

where gn(p) are coefficients depending on the momentum p ∈ X . Repeating the process of
the previous section, one derives a three-term recurrence relation for the polynomials gn(p)

and concludes that

gn(p) = inpn(p) = inhn(p; q)

(q; q)
1/2
n qn(n−1)/4

, (59)

where hn(z; q) are the discrete q-Hermite polynomials of type I from section 4. Hence, the
eigenfunctions of momentum are

φp(y) =
∞∑

n=0

inhn(p; q)

(q; q)
1/2
n qn(n−1)/4

en(y) (60)

=
∞∑

n=0

(iy)n

(q; q)n
hn(p; q) (61)

= (y2; q)∞
(iyp; q)∞

, p ∈ X = {
qs,−qs; s

∣∣∞
0

}
. (62)

To find the last two expressions we have used the same method as in the case of eigenfunctions
of position in (38)–(40).

The normalized eigenfunctions of P are

�p(y) ≡ �±qs (y) =
√

(q2s+2; q2)∞qs

2(q; q)∞(−q; q)2∞
φ±qs (y), (63)

satisfying 〈�x(y),�x ′(y)〉H = δx,x ′ , x, x ′ ∈ X .

6. Coordinate realization of the discrete oscillator

In section 3, we constructed a realization of the discrete oscillator on the space of analytic
functions in the supplementary variable y with the assignment (10). It is natural to look for a
realization of the oscillator on the space of functions in the position coordinate x ∈ X .

9
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Let L2(X ) be the Hilbert space of square-summable functions over x ∈ X (the set of
positions of the discrete oscillator), with the scalar product

〈f1, f2〉L2(X ) := 1

(q2; q2)∞(−1; q)∞

∞∑
n=0

(q2n+2; q2)∞qn(f1(q
n)f ∗

2 (qn) + f1(−qn)f ∗
2 (−qn)),

(64)

where ∗ stands for complex conjugation.
Since the discrete q-Hermite polynomials are associated with the determinate moment

problem (see, e.g., [6] for the description of this association), the set of polynomials {pn(x)}∞0
in (37) constitutes a complete set of orthonormal functions in the Hilbert space L2(X ).

We construct a one-to-one linear isometry 	 from the Hilbert space H, onto the Hilbert
space L2(X ), given by

	 : H � e(y) → f (x) = 〈e(y), ψx(y)〉H ∈ L2(X ), (65)

where ψx(y) are eigenfunctions (40) of Q. It follows from (38) that

H � en(y) → 〈en(y), ψx(y)〉H = pn(x). (66)

That is, 	 maps the basis {en(y)} of H, which is orthonormal under the scalar product (54),
onto the basis {pn(x)} of L2(X ), which is orthonormal under (64); this means that 	 is a
one-to-one isometry.

In L2(X ), the operator Q acts through multiplication,

Qf (x) = xf (x). (67)

Indeed, since Qψx(y) = xψx(y) for 	e(y) = f (x) = 〈e(y), ψx(y)〉H, we have

	 : Qe(y) → Qf (x) = 〈Qe(y), ψx(y)〉H
= 〈e(y),Qψx(y)〉H = 〈e(y), xψx(y)〉H = xf (x). (68)

We can find the action of Q,P and H on the basis elements {pn(x)}∞n=0 of the Hilbert
space L2(X ). According to the recurrence relation (32), which follows from the recurrence
relation for the discrete q-Hermite polynomials hn(z; q), we have for the position operator Q
that

Qpn(x) =
√

qn(1 − qn+1)pn+1(x) +
√

qn−1(1 − qn)pn−1(x). (69)

It follows from formulae (3.28.7) and (3.28.8) in [13] that the momentum operator P acts
on the Hilbert space L2(X ) through

P = −i(1 − q)qH−1/2

(
Dq +

1

q2(q2x2; q2)∞
Dq−1(q2x2; q2)∞

)
, (70)

where (q2x2; q2)∞ is the multiplier in the orthogonality measure in the scalar product (64).
In particular, P acts on the basis functions {pn(x)}∞n=0 as

Ppn(x) = i
√

qn(1 − qn+1)pn+1(x) − i
√

qn−1(1 − qn)pn−1(x). (71)

Finally, the Hamiltonian H acts on the basis polynomials pn(x) of the Hilbert space L2(X )

as

Hpn(x) = (
n + 1

2

)
pn(x). (72)

Indeed, according to (23) and (66) we have

Hpn(x) = 〈Hen(y), ψx(y)〉H
= (

n + 1
2

)〈en(y), ψx(y)〉H = (
n + 1

2

)
pn(x). (73)

10
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Figure 1. Discrete oscillator wavefunctions pn(x) in (37) normalized according to (90) (below),
for the modes n = 0, 1, 2, 3, 6 and 9. The modes have definite parity, pn(−x) = (−1)npn(x), so
we show only the range 0 < x � 1. Continuous lines correspond to the functions of continuous
x, while the dots indicate the values of the function on the points X (q) ⊃ {qn; n|∞0 }. Each graph
includes four values of q: 0.6, 0.7, 0.8 and 0.9, indicated by lines and dots of increasing thickness.

In figure 1, we show some of the lowest discrete oscillator modes pn(x) in (37) and (72),
both as continuous functions of x ∈ (0, 1] and their values at the orthogonality set X , for
various values of q. While the continuous functions exhibit strong oscillations (increasing
with n and 1/q), their values on X (q) remain well bounded within the range in the figure.
As q → 1−, the corresponding points in X densify, evincing the resemblance of the discrete
oscillator with the standard oscillator wavefunctions. This form of convergence should be
studied further, since a change of scale appears necessary as well as a discrete measure that
becomes a continuous Riemann integral in the limit. One analogue for this limit appears
in [16, figure 4], where the Meixner functions that describe the discrete model converge
to the Laguerre–Gauss modes of a radial oscillator; in that case though, the limit is from
hyperboloids to the cone in the three-dimensional space of the Lie algebra su(1, 1), and is not
a q-deformation.

7. Momentum realization of the discrete oscillator

Consider the Hilbert space L2(P) of square-integrable functions f (p) in the momentum
coordinate p in the oscillator with the same scalar product as in (64), where P = X is the
spectrum of the momentum operator P, coinciding with the spectrum of Q. The coefficient
polynomials gn(x) in formula (59) for the eigenfunctions of momentum, φp(y) in (58),
constitute an orthonormal basis in L2(P).

To formalize this consideration, we construct, as in the previous section, a one-to-one
linear isometry 	̃ from the Hilbert space H onto the Hilbert space L2(P), given by

	̃ : H � e(y) → f (p) := 〈e(y), φp(y)〉H ∈ L2(P), (74)

where φp(y) are the eigenfunctions of momentum P in (60)–(62). [Compare with (65)
requiring the position eigenfunctions ψx(y) in (38)–(40).] From here it is evident that

H � en(y) → 〈en(y), φp(y)〉H = gn(p), (75)

that is, 	̃ is a one-to-one isometry and maps the orthonormal basis {en(y)}∞0 ∈ H onto the
orthonormal basis {gn(p)}∞0 ∈ L2(P).

11
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The momentum operator P acts on L2(P) as a multiplication operator on all functions
of p,

Pg(p) = pg(p). (76)

The action of Q,P and H on the basis of polynomials gn(p) can be found in the form of the
recurrence relations

Qgn(p) =
√

qn(1 − qn+1)gn+1(p) +
√

qn−1(1 − qn)gn−1(p), (77)

Pgn(p) = i
√

qn(1 − qn+1)gn+1(p) − i
√

qn−1(1 − qn)gn−1(p), (78)

Hgn(p) = (
n + 1

2

)
gn(p). (79)

8. Harmonic evolution in position space

According to (24) and (25), the action of the operator exp(iτH) is the time evolution of the
discrete oscillator. On the basis (10) of functions {e(y)}∞0 that is orthonormal with respect to
the scalar product (13), this action is

eiτH en(y) = eiτ/2 einτ en(y) = ei(n+1/2)τ en(y). (80)

The operator exp(iτH) also acts on the Hilbert space L2(X ), which is characterized by the
scalar product (64). Now consider the isometry between these two spaces,

H � e(y) → f (x) := 〈e(y), ψx(y)〉H ∈ L2(X ), (81)

that maps functions e(y) onto functions f (x) of the discrete position coordinate x ∈
{−qn, qn}∞0 = X . Then to exp(iτH)e(y) ∈ H there corresponds a function exp(iτH)f (±qs)

of x = ±qs ,

eiτH f (±qs) = 〈eiτH e(y), ψ±qs (y)〉H = 〈e(y), e−iτH ψ±qs (y)〉H (82)

=
∞∑

n=0

〈e(y), en〉H〈en, e−iτH ψ±qs (y)〉H (83)

=
∞∑

n=0

〈e(y), en〉H〈eiτH en, ψ±qs (y)〉H (84)

=
∞∑

n=0

∞∑
m=0

(〈e(y),�qm(y)〉H〈�qm(y), en〉H + 〈e(y),�−qm(y)〉H〈�−qm(y), en〉H)

(85)
× eiτ(n+1/2)〈en, ψ±qs (y)〉H

=
∞∑

m=0

(Kτ (±qs, qm)f (qm) + Kτ(±qs,−qm)f (−qm)); (86)

where, according to (38),

Kτ(±qs,±qm) = cs

∞∑
n=0

〈ψ±qm(y), en〉H eiτ(n+1/2)〈en, ψ±qs (y)〉H (87)

= cs eiτ/2
∞∑

n=0

q−n(n−1)/2

(q; q)n
hn(±qm; q) einτ hn(±qs; q) (88)

12
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and

cs := qs(q2s+2; q2)∞
2(q; q)∞(−q; q)2∞

. (89)

Being elements of L2(X ), the functions f (x), x ∈ X , enter into the scalar product (64)
as a sum with the weight function (x2q2; q2)∞. Because we intend to interpret these as
wavefunctions of a quantum oscillator, and display them for comparison with their standard
shapes, we should absorb this weight into the functions,

F(x) =
√

(x2q2; q2)∞f (x), (90)

so that their scalar product acquires, from (64), the ‘standard’ form,

〈F1, F2〉X := 1

(q2; q2)∞(−1; q)∞

∑
x∈X

|x|F1(x)F2(x)∗,

x ≡ x(±, n) = ±qn ∈ X , n
∣∣∞
0 .

(91)

The matrix elements of operators will be correspondingly rescaled by (90).
The oscillator evolution (82)–(86) can be used to define the fractional discrete Fourier

transform on the functions F(x), x ∈ X , rescaled as in (91). We note that the fractional
Fourier integral transform for angle τ differs from the standard harmonic oscillator evolution
by a phase eiτ/2 that is due to the ground energy 1

2 in the oscillator, so the fractional Fourier
transform is

�(τ) := e−iτ/2 exp(iτH). (92)

Its action on the rescaled discrete wavefunctions will have the form

�(τ)F (x) =
∑
x ′∈X

�(x, x ′; τ)F (x ′), (93)

�(x, x ′; τ) = e−iτ/2

√
(x2q2; q2)∞
(x ′2q2; q2)∞

Kτ(x, x ′), (94)

where x, x ′ ∈ X and Kτ(x, x ′) is given by (87)–(88) for x = ±qs and x ′ = ±qm.
Unfortunately, the bilinear generating function (88) of discrete q-Hermite polynomials of
type I could not be summed to a closed form.

9. Concluding remarks

We constructed a model of the harmonic oscillator that can be realized on bases of coordinate
and momentum Hilbert spaces, and its energy modes expressed in terms of discrete q-Hermite
polynomials of type I. The spectrum of the Hamiltonian coincides with that of the standard
harmonic oscillator in quantum mechanics, while the position and momentum operators in
this model have discrete, denumerably infinite spectra that depend on the extension parameter
q contained in the interval [−1, 1].

Contrary to other models that use discrete q-Hermite polynomials [17–19], our models
(the present one and that in [8]) fulfil the basic Hamilton equations in the form [H,Q] = −iP
and [H,P ] = iQ, with standard commutators—and not q-commutators [1, 2]. Because of
this important circumstance, the time evolution of the model is a Lie group, which but for a
phase is that of fractional Fourier transforms associated with this model [20]. This discrete
oscillator is a new and non-trivial deformation of the standard quantum harmonic oscillator;

13
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it allows the extension of other standard concepts of phase space, such as coherent states [8],
that will be examined elsewhere.

We believe that the discrete oscillator model can appropriately describe discrete quantum
systems on bounded point lattices, and also contribute significantly to the general theory of
special functions.
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Ukraine. We thank Guillermo Krötzsch for assistance with the figures.

References

[1] Macfarlane A J 1989 On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q
J. Phys. A: Math. Gen. 22 4581–8

[2] Biedenharn L C 1989 The quantum group SUq(2) and a q-analogue of the boson operators J. Phys. A: Math.
Gen. 22 L873–L878

[3] Kulish P P and Damaskinsky E V 1990 On the q oscillator and the quantum algebra suq(1, 1) J. Phys. A: Math.
Gen. 23 L415–L419

[4] Atakishiyev N M and Suslov S K 1991 Difference analogs of the harmonic oscillator Teor. Math. Phys. 85
1055–62

[5] Burban I M and Klimyk A U 1999 On spectral properties of q-oscillator operators Lett. Math. Phys. 29 13–8
[6] Klimyk A U 2005 On position and momentum operators in the q-oscillator J. Phys. A: Math. Gen. 38 4447–58
[7] Arık M, Atakishiyev N M and Wolf K B 1999 Quantum algebraic structures compatible with the harmonic

oscillator Newton equation J. Phys. A: Math. Gen. 32 L371–6
[8] Atakishiyev N M, Klimyk A U and Wolf K B 2004 Finite q-oscillator J. Phys. A: Math. Gen. 37 5569–87
[9] Atakishiyev N M and Wolf K B 1997 Fractional Fourier–Kravchuk transform J. Opt. Soc. Am. A 14 1467–77

[10] Atakishiyev N M, Pogosyan G, Vicent L E and Wolf K B 2004 Finite two-dimensional oscillator: I. The
Cartesian model J. Phys. A: Math. Gen. 34 9381–98

Atakishiyev N M, Pogosyan G, Vicent L E and Wolf K B 2004 Finite two-dimensional oscillator: II. The radial
model J. Phys. A: Math. Gen. 34 9399–415

[11] Atakishiyev M N, Atakishiyev N M and Klimyk A U 2006 On suq(1, 1)-models of quantum oscillator J. Math.
Phys. 47 093502

[12] Gasper G and Rahman M 2004 Basic Hypergeometric Functions (Cambridge: Cambridge University Press)
[13] Koekoek R and Swarttouw R F 1998 The Askey-scheme of hypergeometric orthogonal polynomials and its

q-analogue Report 98-17 Delft University of Technology (available from ftp.tudelft.nl)
[14] Berezanskiı̆ Yu M 1969 Expansions in Eigenfunctions of Selfadjoint Operators (Providence, RI: American

Mathematical Society)
[15] Atakishiyev N M and Klimyk A U 2004 On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials

J. Math. Anal. Appl. 294 246–57
[16] Atakishiyev N M, Nagiyev Sh M, Vicent L E and Wolf K B 2000 Covariant discretization of axis-symmetric

linear optical systems J. Opt. Soc. Am. A 17 2301–14
[17] Lorek A, Ruffing A and Wess J 1997 A q-deformation of the harmonic oscillator Z. Phys. C 74 369–77
[18] Hinterding R and Wess J 1999 q-deformed Hermite polynomials in q-quantum mechanics Eur. Phys. J. C 6

183–6
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